TY - JOUR
T1 - Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation
T2 - Evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle
AU - Cheng, Chen
AU - Kim, Bong Gon
AU - Guironnet, Damien
AU - Brookhart, Maurice
AU - Guan, Changjian
AU - Wang, David Y.
AU - Krogh-Jespersen, Karsten
AU - Goldman, Alan S.
PY - 2014/5/7
Y1 - 2014/5/7
N2 - New carbazolide-based iridium pincer complexes (carbPNP) Ir(C2H4), 3a, and (carbPNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-(carbPNP) Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-( carbPNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of (carbPNP)Ir(H)(Et)(C2H 4) and by H2 through formation of (carbPNP) Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ( carbPNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex (carbPNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H 2), cis-(carbPNP)Ir(C2H4)(H) 2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.
AB - New carbazolide-based iridium pincer complexes (carbPNP) Ir(C2H4), 3a, and (carbPNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-(carbPNP) Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-( carbPNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of (carbPNP)Ir(H)(Et)(C2H 4) and by H2 through formation of (carbPNP) Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ( carbPNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex (carbPNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H 2), cis-(carbPNP)Ir(C2H4)(H) 2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84900337105&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84900337105&partnerID=8YFLogxK
U2 - 10.1021/ja501572g
DO - 10.1021/ja501572g
M3 - Article
C2 - 24746026
AN - SCOPUS:84900337105
SN - 0002-7863
VL - 136
SP - 6672
EP - 6683
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 18
ER -