TY - JOUR
T1 - Sympatric ecological speciation meets pyrosequencing
T2 - Sampling the transcriptome of the apple maggot Rhagoletis pomonella
AU - Schwarz, Dietmar
AU - Robertson, Hugh M.
AU - Feder, Jeffrey L.
AU - Varala, Kranthi
AU - Hudson, Matthew E.
AU - Ragland, Gregory J.
AU - Hahn, Daniel A.
AU - Berlocher, Stewart H.
N1 - Funding Information:
We thank Kim Walden for technical assistance, and Shahjahan Ali for the text which we modified for the description of the 454 library construction and sequencing reactions in the Supporting Information. We thank the Champaign County Forest Preserve for permission to collect flies over many years. USDA CRI AG 2007-35604-17886, NSF DEB 06-14528, and NSF-IOS-641505 provided financial support.
PY - 2009/12/27
Y1 - 2009/12/27
N2 - Background: The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies.Results: We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora.Conclusions: These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races.
AB - Background: The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies.Results: We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora.Conclusions: These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome will facilitate future functional studies of candidate genes for olfaction and diapause-related life history timing, and will enable large scale expression studies. Similarly, the identification of new SNP and microsatellite markers will facilitate future population and quantitative genetic studies of divergence between the apple and hawthorn-infesting host races.
UR - http://www.scopus.com/inward/record.url?scp=74549161429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=74549161429&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-10-633
DO - 10.1186/1471-2164-10-633
M3 - Article
C2 - 20035631
AN - SCOPUS:74549161429
SN - 1471-2164
VL - 10
JO - BMC Genomics
JF - BMC Genomics
M1 - 633
ER -