Switch-like control of helicase processivity by single-stranded DNA binding protein

Barbara Stekas, Steve Yeo, Alice Troitskaia, Masayoshi Honda, Sei Sho, Maria Spies, Yann R. Chemla

Research output: Contribution to journalArticlepeer-review

Abstract

Helicases utilize nucleotide triphosphate (NTP) hydrolysis to translocate along single-stranded nucleic acids (NA) and unwind the duplex. In the cell, helicases function in the context of other NA-associated proteins such as single-stranded DNA binding proteins. Such encounters regulate helicase function, although the underlying mechanisms remain largely unknown. Ferroplasma acidarmanus xeroderma pigmentosum group D (XPD) helicase serves as a model for understanding the molecular mechanisms of superfamily 2B helicases, and its activity is enhanced by the cognate single-stranded DNA binding protein replication protein A 2 (RPA2). Here, optical trap measurements of the unwinding activity of a single XPD helicase in the presence of RPA2 reveal a mechanism in which XPD interconverts between two states with different processivities and transient RPA2 interactions stabilize the more processive state, activating a latent ‘processivity switch’ in XPD. A point mutation at a regulatory DNA binding site on XPD similarly activates this switch. These findings provide new insights on mechanisms of helicase regulation by accessory proteins.

Original languageEnglish (US)
Article numbere60515
JournaleLife
Volume10
DOIs
StatePublished - Mar 2021

ASJC Scopus subject areas

  • General Neuroscience
  • General Biochemistry, Genetics and Molecular Biology
  • General Immunology and Microbiology

Fingerprint

Dive into the research topics of 'Switch-like control of helicase processivity by single-stranded DNA binding protein'. Together they form a unique fingerprint.

Cite this