SWEETs, transporters for intracellular and intercellular sugar translocation

Joon Seob Eom, Li Qing Chen, Davide Sosso, Benjamin T. Julius, I. W. Lin, Xiao Qing Qu, David M. Braun, Wolf B. Frommer

Research output: Contribution to journalReview articlepeer-review

Abstract

Three families of transporters have been identified as key players in intercellular transport of sugars: MSTs (monosaccharide transporters), SUTs (sucrose transporters) and SWEETs (hexose and sucrose transporters). MSTs and SUTs fall into the major facilitator superfamily; SWEETs constitute a structurally different class of transporters with only seven transmembrane spanning domains. The predicted topology of SWEETs is supported by crystal structures of bacterial homologs (SemiSWEETs). On average, angiosperm genomes contain ~20 paralogs, most of which serve distinct physiological roles. In Arabidopsis, AtSWEET8 and 13 feed the pollen; SWEET11 and 12 provide sucrose to the SUTs for phloem loading; AtSWEET11, 12 and 15 have distinct roles in seed filling; AtSWEET16 and 17 are vacuolar hexose transporters; and SWEET9 is essential for nectar secretion. The remaining family members await characterization, and could play roles in the gametophyte as well as other important roles in sugar transport in the plant. In rice and cassava, and possibly other systems, sucrose transporting SWEETs play central roles in pathogen resistance. Notably, the human genome also contains a glucose transporting isoform. Further analysis promises new insights into mechanism and regulation of assimilate allocation and a new potential for increasing crop yield.

Original languageEnglish (US)
Pages (from-to)53-62
Number of pages10
JournalCurrent opinion in plant biology
Volume25
DOIs
StatePublished - Jun 1 2015
Externally publishedYes

ASJC Scopus subject areas

  • Plant Science

Fingerprint Dive into the research topics of 'SWEETs, transporters for intracellular and intercellular sugar translocation'. Together they form a unique fingerprint.

Cite this