Abstract
Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0±0.01 μmol per day for the co-culture and 10.1±0.3 μmol per day for the tri-culture) compared with DE195 grown alone (3.8±0.1 μmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0±0.5 × 10 7 cells per mol Cl - released, compared with 6.8±0.9 × 10 7 cells per μmol Cl - released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3±1.8 × 10 7 cells per μmol Cl - released). The transcriptome of DE195 grown in the co-culture was analyzed using a whole-genome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H 2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.
Original language | English (US) |
---|---|
Pages (from-to) | 410-421 |
Number of pages | 12 |
Journal | ISME Journal |
Volume | 6 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2012 |
Externally published | Yes |
Keywords
- Dehalococcoides
- bioremediation
- chlorinated ethenes
- microarray
- proteomics
- syntrophy
ASJC Scopus subject areas
- Microbiology
- Ecology, Evolution, Behavior and Systematics