TY - JOUR
T1 - Surjectivity for Hamiltonian loop group spaces
AU - Bott, Raoul
AU - Tolman, Susan
AU - Weitsman, Jonathan
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004
Y1 - 2004
N2 - Let G be a compact Lie group, and let LG denote the corresponding loop group. Lei (X, ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X, ω), and assume that the moment map μ : X → Lg* is proper. We consider the function |μ|2 : X → ℝ, and use a version of Morse theory to show that the inclusion map j : μ-1 (0) → X induces a surjection j* : H* G(X) → H*G (μ-1 (0)), in analogy with Kirwan's surjectivity theorem in the finite-dimensional case. We also prove a version of this surjectivity theorem for quasi-Hamiltonian G-spaces.
AB - Let G be a compact Lie group, and let LG denote the corresponding loop group. Lei (X, ω) be a weakly symplectic Banach manifold. Consider a Hamiltonian action of LG on (X, ω), and assume that the moment map μ : X → Lg* is proper. We consider the function |μ|2 : X → ℝ, and use a version of Morse theory to show that the inclusion map j : μ-1 (0) → X induces a surjection j* : H* G(X) → H*G (μ-1 (0)), in analogy with Kirwan's surjectivity theorem in the finite-dimensional case. We also prove a version of this surjectivity theorem for quasi-Hamiltonian G-spaces.
UR - http://www.scopus.com/inward/record.url?scp=0842325121&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0842325121&partnerID=8YFLogxK
U2 - 10.1007/s00222-003-0319-2
DO - 10.1007/s00222-003-0319-2
M3 - Article
AN - SCOPUS:0842325121
SN - 0020-9910
VL - 155
SP - 225
EP - 251
JO - Inventiones Mathematicae
JF - Inventiones Mathematicae
IS - 2
ER -