Surgical retraction of non-uniform deformable layers of tissue: 2D robot grasping and path planning

Rik Jansen, Kris Hauser, Nuttapong Chentanez, Frank Van Der Stappen, Ken Goldberg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper considers robotic automation of a common surgical retraction primitive of exposing an underlying area by grasping and lifting a thin, 3D, possibly inhomogeneous layer of tissue. We present an algorithm that computes a set of stable and secure grasp-and-retract trajectories for a point-jaw gripper moving along a plane, and runs a 3D finite element (FEM) simulation to certify and assess the quality of each trajectory. To compute secure candidate grasp locations, we use a continuous spring model of thin, inhomogeneous deformable objects with linear energy potential. Experiments show that this method produces many of the same grasps as an exhaustive optimization with an FEM mesh, but is orders of magnitude cheaper: our method runs in O(v log v) time, where v is the number of veins, while the FEM computation takes O(pn3) time, where n is the number of nodes in the FEM mesh and p is the number of nodes on its perimeter. Furthermore, we present a constant tissue curvature (CTC) retraction trajectory that distributes strain uniformly around the medial axis of the tissue. 3D FEM simulations show that the CTC achieves retractions with lower tissue strain than circular and linear trajectories. Overall, our algorithm computes and certifies a high-quality retraction in about one minute on a PC.

Original languageEnglish (US)
Title of host publication2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Pages4092-4097
Number of pages6
DOIs
StatePublished - Dec 11 2009
Externally publishedYes
Event2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, United States
Duration: Oct 11 2009Oct 15 2009

Publication series

Name2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Other

Other2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period10/11/0910/15/09

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Surgical retraction of non-uniform deformable layers of tissue: 2D robot grasping and path planning'. Together they form a unique fingerprint.

Cite this