Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia

Trent W. Ford, Oliver W. Frauenfeld

Research output: Contribution to journalArticlepeer-review


Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

Original languageEnglish (US)
Article number19163
JournalScientific reports
StatePublished - Jan 18 2016
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Surface-Atmosphere Moisture Interactions in the Frozen Ground Regions of Eurasia'. Together they form a unique fingerprint.

Cite this