TY - JOUR
T1 - Supply of Methionine During Late-Pregnancy Alters Fecal Microbiota and Metabolome in Neonatal Dairy Calves Without Changes in Daily Feed Intake
AU - Elolimy, Ahmed
AU - Alharthi, Abdulrahman
AU - Zeineldin, Mohamed
AU - Parys, Claudia
AU - Helmbrecht, Ariane
AU - Loor, Juan J.
N1 - Funding Information:
Funding. AE was a recipient of Ph.D. fellowship from Higher Education Ministry, Egypt to perform his Ph.D. studies at the University of Illinois (Urbana). AA was supported by a fellowship from King Saud University (Riyadh, Saudi Arabia) to perform his MS and Ph.D. studies at the University of Illinois (Urbana).
Publisher Copyright:
© Copyright © 2019 Elolimy, Alharthi, Zeineldin, Parys, Helmbrecht and Loor.
PY - 2019/9/19
Y1 - 2019/9/19
N2 - To our knowledge, most studies demonstrating the role of manipulating maternal nutrition on hindgut (i.e., large intestine) microbiota in the offspring have been performed in non-ruminants. Whether this phenomenon exists in cattle is largely unknown. Therefore, the objectives of the current study were to evaluate the impact of maternal post-ruminal supply of methionine during late-pregnancy in dairy cows on fecal microbiota and metabolome in neonatal calves, and their association with body development and growth performance during the preweaning period. To achieve this, heifer calves, i.e., neonatal female offspring, born to Holstein cows receiving either a control (CON) diet (n = 13) or CON plus rumen-protected methionine (MET; Evonik Nutrition & Care GmbH) during the last 28 days of pregnancy were used. Fecal samples from heifers were collected from birth until 6 weeks of age, i.e., the preweaning period. Fecal microbiota was analyzed with QIIME 2 whereas fecal metabolites were measured using an untargeted LC-MS approach. At birth, MET heifers had greater (P ≤ 0.05) BW, HH, and WH. During the preweaning period, no differences between groups were detected for starter intake (P = 0.77). However, MET heifers maintained greater (P ≤ 0.05) BW, HH and tended (P = 0.06) to have greater WH and average daily gain (ADG) (P = 0.10). Fecal microbiota and metabolome profiles through 42 days of age in MET heifers indicated greater capacity for hindgut production of endogenous antibiotics and enhanced hindgut functionality and health. Enhancing maternal post-ruminal supply of methionine during late-gestation in dairy cows has a positive effect on hindgut functionality and health in their offspring through alterations in the fecal microbiota and metabolome without affecting feed intake. Those alterations could limit pathogen colonization of the hindgut while providing essential nutrients to the neonate. Together, such responses contribute to the ability of young calves to achieve better rates of nutrient utilization for growth.
AB - To our knowledge, most studies demonstrating the role of manipulating maternal nutrition on hindgut (i.e., large intestine) microbiota in the offspring have been performed in non-ruminants. Whether this phenomenon exists in cattle is largely unknown. Therefore, the objectives of the current study were to evaluate the impact of maternal post-ruminal supply of methionine during late-pregnancy in dairy cows on fecal microbiota and metabolome in neonatal calves, and their association with body development and growth performance during the preweaning period. To achieve this, heifer calves, i.e., neonatal female offspring, born to Holstein cows receiving either a control (CON) diet (n = 13) or CON plus rumen-protected methionine (MET; Evonik Nutrition & Care GmbH) during the last 28 days of pregnancy were used. Fecal samples from heifers were collected from birth until 6 weeks of age, i.e., the preweaning period. Fecal microbiota was analyzed with QIIME 2 whereas fecal metabolites were measured using an untargeted LC-MS approach. At birth, MET heifers had greater (P ≤ 0.05) BW, HH, and WH. During the preweaning period, no differences between groups were detected for starter intake (P = 0.77). However, MET heifers maintained greater (P ≤ 0.05) BW, HH and tended (P = 0.06) to have greater WH and average daily gain (ADG) (P = 0.10). Fecal microbiota and metabolome profiles through 42 days of age in MET heifers indicated greater capacity for hindgut production of endogenous antibiotics and enhanced hindgut functionality and health. Enhancing maternal post-ruminal supply of methionine during late-gestation in dairy cows has a positive effect on hindgut functionality and health in their offspring through alterations in the fecal microbiota and metabolome without affecting feed intake. Those alterations could limit pathogen colonization of the hindgut while providing essential nutrients to the neonate. Together, such responses contribute to the ability of young calves to achieve better rates of nutrient utilization for growth.
KW - calves
KW - cows
KW - gut
KW - metabolomics
KW - methionine
KW - microbiota
KW - prenatal
KW - preweaning
UR - http://www.scopus.com/inward/record.url?scp=85073021320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073021320&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2019.02159
DO - 10.3389/fmicb.2019.02159
M3 - Article
C2 - 31608024
AN - SCOPUS:85073021320
VL - 10
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
SN - 1664-302X
M1 - 2159
ER -