Superionic Conduction in One-Dimensional Nanostructures

Ki Hyun Cho, Prashant K. Jain

Research output: Contribution to journalArticlepeer-review

Abstract

Nanostructuring has become a powerful tool for tuning the electronic properties of materials and enhancing transport. As an example of relevance to next-generation battery technologies, nanocrystals have shown promise for realizing fast-ion conduction in solids; however, dissipationless ion transport over extended length scales is hindered by lossy interfaces formed between nanocrystals in a solid. Here we address this challenge by exploiting one-dimensional nanostructures for ion transport. Superionic conduction, with a record-high ionic conductivity of ∼4 S/cm at 150 °C, is demonstrated in solid electrolytes fabricated from nanowires of the earth-abundant solid copper selenide. This quasi-one-dimensional ionic conductivity is ∼5× higher than that in bulk cuprous selenide. Nanoscale dimensions in the radial direction lower ion-hopping barriers, while mesoscopically long, interface-free transport paths are available for ion transport in the axial direction. One-dimensional nanostructures can exceptionally boost solid-state devices that rely on ion transport.

Original languageEnglish (US)
Pages (from-to)12445-12451
Number of pages7
JournalACS Nano
Volume16
Issue number8
DOIs
StatePublished - Aug 23 2022

Keywords

  • ion transport
  • nanocrystal
  • nanowire
  • phase transition
  • solid electrolyte

ASJC Scopus subject areas

  • General Engineering
  • General Materials Science
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Superionic Conduction in One-Dimensional Nanostructures'. Together they form a unique fingerprint.

Cite this