Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells

Andreas P. Kourouklis, Kerim B. Kaylan, Gregory H. Underhill

Research output: Contribution to journalArticlepeer-review

Abstract

Recent approaches have utilized microfabricated platforms to examine combinations of microenvironmental signals that regulate stem and progenitor cell differentiation. However, the majority of these efforts have focused on the biochemical properties of extracellular matrix (ECM) or soluble factors without simultaneously exploring the biomechanical effects of cell-substrate interactions. To address this need, we combined a high-throughput approach for the analysis of combinatorial ECM cues with substrates of modular stiffness and traction force microscopy. This integrated approach enabled the characterization of cell-generated traction stress and phenotypic expression in response to ECM cues. We investigated the impact of substrate stiffness and ECM composition on the differentiation of bipotential mouse embryonic liver (BMEL) progenitor cells. We observed that hepatocyte differentiation was primarily regulated by ECM composition, and cholangiocyte differentiation was cooperatively influenced by ECM proteins and stiffness properties. In particular, stiffness-mediated cholangiocyte differentiation was observed for cells cultured on fibronectin, while collagen IV promoted differentiation independent of substrate stiffness. We demonstrated the influence of cell contractility and traction stress in early cholangiocyte specification and further uncovered the roles of ERK and ROCK in this differentiation process. Overall, these findings illustrate the involvement of biomechanical signals in liver progenitor differentiation. Further, this approach could enable investigations for a broad range of cell types and ECM proteins, providing an integrated platform for evaluating the combinatorial effects of biochemical and biophysical signals in cell differentiation.

Original languageEnglish (US)
Pages (from-to)82-94
Number of pages13
JournalBiomaterials
Volume99
DOIs
StatePublished - Aug 1 2016

Keywords

  • Cellular microarrays
  • Extracellular matrix
  • Liver progenitor cells
  • Substrate stiffness
  • Traction force microscopy

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells'. Together they form a unique fingerprint.

Cite this