TY - GEN
T1 - Submodular function maximization via the multilinear relaxation and contention resolution schemes
AU - Chekuri, Chandra
AU - Vondrák, Jan
AU - Zenklusen, Rico
PY - 2011
Y1 - 2011
N2 - We consider the problem of maximizing a non-negative submodular set function f: 2N → ℝ+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular when f may be a non-monotone function. Our algorithms are based on (approximately) solving the multilinear extension F of f [5] over a polytope P that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully in some settings [6, 22, 24, 13, 3], it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize F over an arbitrary down-closed polytope P that has an efficient separation oracle. Previously this was known only for monotone functions [36]. For non-monotone functions, a constant factor was known only when the polytope was either the intersection of a fixed number of knapsack constraints [24] or a matroid polytope [37,30]. Second, we show that contention resolution schemes are an effective way to round a fractional solution, even when f is non-monotone. In particular, contention resolution schemes for different polytopes can be combined to handle the intersection of different constraints. Via LP duality we show that a contention resolution scheme for a constraint is related to the correlation gap [1] of weighted rank functions of the constraint. This leads to an optimal contention resolution scheme for the matroid polytope. Our results provide a broadly applicable framework for maximizing linear and submodular functions subject to independence constraints. We give several illustrative examples. Contention resolution schemes may find other applications.
AB - We consider the problem of maximizing a non-negative submodular set function f: 2N → ℝ+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular when f may be a non-monotone function. Our algorithms are based on (approximately) solving the multilinear extension F of f [5] over a polytope P that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully in some settings [6, 22, 24, 13, 3], it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize F over an arbitrary down-closed polytope P that has an efficient separation oracle. Previously this was known only for monotone functions [36]. For non-monotone functions, a constant factor was known only when the polytope was either the intersection of a fixed number of knapsack constraints [24] or a matroid polytope [37,30]. Second, we show that contention resolution schemes are an effective way to round a fractional solution, even when f is non-monotone. In particular, contention resolution schemes for different polytopes can be combined to handle the intersection of different constraints. Via LP duality we show that a contention resolution scheme for a constraint is related to the correlation gap [1] of weighted rank functions of the constraint. This leads to an optimal contention resolution scheme for the matroid polytope. Our results provide a broadly applicable framework for maximizing linear and submodular functions subject to independence constraints. We give several illustrative examples. Contention resolution schemes may find other applications.
KW - approximation algorithm
KW - contention resolution scheme
KW - independence constraint
KW - matroid
KW - submodular function maximization
UR - http://www.scopus.com/inward/record.url?scp=79959724727&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79959724727&partnerID=8YFLogxK
U2 - 10.1145/1993636.1993740
DO - 10.1145/1993636.1993740
M3 - Conference contribution
AN - SCOPUS:79959724727
SN - 9781450306911
T3 - Proceedings of the Annual ACM Symposium on Theory of Computing
SP - 783
EP - 792
BT - STOC'11 - Proceedings of the 43rd ACM Symposium on Theory of Computing
PB - Association for Computing Machinery
T2 - 43rd ACM Symposium on Theory of Computing, STOC 2011
Y2 - 6 June 2011 through 8 June 2011
ER -