Abstract

D-Aspartate (D-Asp) is an especially intriguing molecule found within neurons of the central nervous system of animals ranging from mollusks to vertebrates. It has a large variety of roles ascribed to it, including an involvement in cell-to-cell signaling. To determine the D-Asp content in cells and in subcellular domains, a laboratory-assembled capillary electrophoresis system with laser-induced fluorescence (LIF) detection has been used. The system allows chiral separations with sufficient sensitivity and selectivity to measure the D-Asp content in specific subregions of a single neuron, including neuronal processes. The method uses microvial sampling, analyte derivatization with naphthalene-2,3-dicarboxaldehyde, cyclodextrin-mediated micellar electrokinetic capillary chromatography, and sheath flow cell-based LIF detection. Manipulating neuronal processes is difficult as they often disintegrate during the transfer to the sampling vial. We describe a glycerol treatment that stabilizes cell morphology during sample preparation, thereby alleviating the deleterious effects of the high-salt extracellular matrix on the electrophoretic separation. D-Asp percentages in processes from identified neurons from Aplysia californica differ significantly depending on the cell studied. Subcellular analysis reveals more compounds in the cell body than in the processes.

Original languageEnglish (US)
Pages (from-to)7190-7194
Number of pages5
JournalAnalytical Chemistry
Volume77
Issue number22
DOIs
StatePublished - Nov 15 2005

ASJC Scopus subject areas

  • Analytical Chemistry

Fingerprint

Dive into the research topics of 'Subcellular analysis of D-Aspartate'. Together they form a unique fingerprint.

Cite this