Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes

Changxin Chen, Yu Lin, Wu Zhou, Ming Gong, Zhuoyang He, Fangyuan Shi, Xinyue Li, Justin Zachary Wu, Kai Tak Lam, Jian Nong Wang, Fan Yang, Qiaoshi Zeng, Jing Guo, Wenpei Gao, Jian Min Zuo, Jie Liu, Guosong Hong, Alexander L. Antaris, Meng Chang Lin, Wendy L. MaoHongjie Dai

Research output: Contribution to journalArticlepeer-review


Graphene nanoribbons are of potential use in the development of electronic and optoelectronic devices. However, the preparation of narrow and long nanoribbons with smooth edges, sizeable bandgaps and high mobilities is challenging. Here we show that sub-10-nm-wide semiconducting graphene nanoribbons with atomically smooth closed edges can be produced by squashing carbon nanotubes using a high-pressure and thermal treatment. With this approach, nanoribbons as narrow as 1.4 nm can be created, and up to 54% of single- and double-walled nanotubes in a sample can be converted into edge-closed nanoribbons. We also fabricate edge-opened nanoribbons using nitric acid as the oxidant to selectively etch the edges of the squashed nanotubes under high pressure. A field-effect transistor fabricated using a 2.8-nm-wide edge-closed nanoribbon exhibits an on/off current ratio of more than 104, from which a bandgap of around 494 meV is estimated. The device also exhibits a field-effect mobility of 2,443 cm2 V−1 s−1 and an on-state channel conductivity of 7.42 mS.

Original languageEnglish (US)
Pages (from-to)653-663
Number of pages11
JournalNature Electronics
Issue number9
StatePublished - Sep 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Electrical and Electronic Engineering


Dive into the research topics of 'Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes'. Together they form a unique fingerprint.

Cite this