TY - GEN
T1 - Study of the mechanics of the micro-groove cutting process
AU - Bourne, Keith A.
AU - Kapoor, Shiv G.
AU - DeVor, Richard E.
PY - 2011
Y1 - 2011
N2 - In an earlier paper, a high-speed micro-groove cutting process that makes use of a flexible single-point cutting tool was presented. In this paper, 3D finite element modeling of this cutting process is used to better understand process mechanics. The development of the model, including parameter estimation and validation, is described. Validation experiments show that on average the model predicts side burr height to within 2.8%, chip curl radius to within 4.1%, and chip thickness to within 25.4%. The model is used to examine chip formation, side burr formation, exit burr formation, and the potential for delamination of a workpiece consisting of a thin film on a substrate. Side burr formation is shown to primarily occur ahead of a tool and is caused by expansion of material compressed after starting to flow around a tool rather than becoming part of a chip. Exit burr formation is shown to occur when a thin membrane of material forms ahead of a tool and splits into two side segments and one bottom segment as the tool exits a workpiece. Lastly, examination of the stresses below a workpiece surface shows that film delamination can occur when the depth of a groove cut into a thin film is large relative to the film thickness.
AB - In an earlier paper, a high-speed micro-groove cutting process that makes use of a flexible single-point cutting tool was presented. In this paper, 3D finite element modeling of this cutting process is used to better understand process mechanics. The development of the model, including parameter estimation and validation, is described. Validation experiments show that on average the model predicts side burr height to within 2.8%, chip curl radius to within 4.1%, and chip thickness to within 25.4%. The model is used to examine chip formation, side burr formation, exit burr formation, and the potential for delamination of a workpiece consisting of a thin film on a substrate. Side burr formation is shown to primarily occur ahead of a tool and is caused by expansion of material compressed after starting to flow around a tool rather than becoming part of a chip. Exit burr formation is shown to occur when a thin membrane of material forms ahead of a tool and splits into two side segments and one bottom segment as the tool exits a workpiece. Lastly, examination of the stresses below a workpiece surface shows that film delamination can occur when the depth of a groove cut into a thin film is large relative to the film thickness.
UR - http://www.scopus.com/inward/record.url?scp=82455166818&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82455166818&partnerID=8YFLogxK
U2 - 10.1115/MSEC2011-50076
DO - 10.1115/MSEC2011-50076
M3 - Conference contribution
AN - SCOPUS:82455166818
SN - 9780791844311
T3 - ASME 2011 International Manufacturing Science and Engineering Conference, MSEC 2011
SP - 339
EP - 348
BT - ASME 2011 International Manufacturing Science and Engineering Conference, MSEC 2011
T2 - ASME 2011 International Manufacturing Science and Engineering Conference, MSEC 2011
Y2 - 13 June 2011 through 17 June 2011
ER -