TY - JOUR
T1 - Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance
AU - Katzenellenbogen, John A.
AU - Mayne, Christopher G.
AU - Katzenellenbogen, Benita S.
AU - Greene, Geoffrey L.
AU - Chandarlapaty, Sarat
N1 - Funding Information:
The authors thank their numerous co- workers for their research efforts. Grant support of much of the work described in this Opinion piece from the following sources: the US National Institutes of Health (PHS R01DK015556 to J.A.K., P41GM104601 and T32GM070421 to the University of Illinois, 5R01CA20499 to S.C., P30CA008748 to Memorial Sloan Kettering Cancer Center and P30CA14599 to the University of Chicago Cancer Center), the Virginia and D.K. Ludwig Fund for Cancer Research (to G.L.G.), the US Department of Defense (DOD BC131458 to G.L.G.) and the Breast Cancer Research Foundation (BCRF 17-083 to J.A.K. and B.S.K. and BCRF 17-082 to B.S.K.).
Funding Information:
The authors thank their numerous co-workers for their research efforts. Grant support of much of the work described in this Opinion piece from the following sources: the US National Institutes of Health (PHS R01DK015556 to J.A.K., P41GM104601 and T32GM070421 to the University of Illinois, 5R01CA20499 to S.C., P30CA008748 to Memorial Sloan Kettering Cancer Center and P30CA14599 to the University of Chicago Cancer Center), the Virginia and D.K. Ludwig Fund for Cancer Research (to G.L.G.), the US Department of Defense (DOD BC131458 to G.L.G.) and the Breast Cancer Research Foundation (BCRF 17–083 to J.A.K. and B.S.K. and BCRF 17-082 to B.S.K.).
Publisher Copyright:
© 2018 Macmillan Publishers Ltd., part of Springer Nature. All rights reserved.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand-receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.
AB - Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand-receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.
UR - http://www.scopus.com/inward/record.url?scp=85045418167&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85045418167&partnerID=8YFLogxK
U2 - 10.1038/s41568-018-0001-z
DO - 10.1038/s41568-018-0001-z
M3 - Review article
C2 - 29662238
AN - SCOPUS:85045418167
SN - 1474-175X
VL - 18
SP - 377
EP - 388
JO - Nature Reviews Cancer
JF - Nature Reviews Cancer
IS - 6
ER -