Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides

Mehrshad Mehboudi, Benjamin M. Fregoso, Yurong Yang, Wenjuan Zhu, Arend Van Der Zande, Jaime Ferrer, L. Bellaiche, Pradeep Kumar, Salvador Barraza-Lopez

Research output: Contribution to journalArticlepeer-review


GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature Tc well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above Tc. As the in-plane lattice transforms from a rectangle into a square at Tc, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at Tc, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at Tc. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3×10-12 C/K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.

Original languageEnglish (US)
Article number246802
JournalPhysical review letters
Issue number24
StatePublished - Dec 9 2016

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides'. Together they form a unique fingerprint.

Cite this