TY - JOUR
T1 - Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy
AU - Morgan, Joel E.
AU - Vakkasoglu, Ahmet S.
AU - Lugtenburg, Johan
AU - Gennis, Robert B.
AU - Maeda, Akio
PY - 2008/11/4
Y1 - 2008/11/4
N2 - One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pK a of PRG; ∼9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm-1. This broad band is made up of two parts. The band above 1780 cm-1, which is insensitive to C 15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm-1, on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15-H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm -1 band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.
AB - One of the steps in the proton pumping cycle of bacteriorhodopsin (BR) is the release of a proton from the proton-release group (PRG) on the extracellular side of the Schiff base. This proton release takes place shortly after deprotonation of the Schiff base (L-to-M transition) and results in an increase in the pKa of Asp85, which is a crucial mechanistic step for one-way proton transfer for the entire photocycle. Deprotonation of the PRG can also be brought about without photoactivation, by raising the pH of the enzyme (pK a of PRG; ∼9). Thus, comparison of the FTIR difference spectrum for formation of the M intermediate (M minus initial unphotolyzed BR state) at pH 7 to the corresponding spectrum generated at pH 10 may reveal structural changes specifically associated with deprotonation of the PRG. Vibrational bands of BR that change upon M formation are distributed across a broad region between 2120 and 1685 cm-1. This broad band is made up of two parts. The band above 1780 cm-1, which is insensitive to C 15-deuteration of the retinal, may be due to a proton delocalized in the PRG. The band between 1725 and 1685 cm-1, on the lower frequency side of the broad band, is sensitive to C15-deuteration. This band may arise from transition dipole coupling of the vibrations of backbone carbonyl groups in helix G with the side chain of Tyr57 and with the C15-H of the Schiff base. In M, these broad bands are abolished, and the 3657 cm -1 band, which is due to the disruption of the hydrogen bonding of a water molecule, probably with Arg82, appears. Loss of the interaction of the backbone carbonyl groups in helix G with Tyr57 and the Schiff base, and separation of Tyr57 from Arg82, may be causes of these spectral changes, leading to the stabilization of the protonated Asp85 in M.
UR - http://www.scopus.com/inward/record.url?scp=55249119081&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55249119081&partnerID=8YFLogxK
U2 - 10.1021/bi801405v
DO - 10.1021/bi801405v
M3 - Article
C2 - 18837559
AN - SCOPUS:55249119081
SN - 0006-2960
VL - 47
SP - 11598
EP - 11605
JO - Biochemistry
JF - Biochemistry
IS - 44
ER -