Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants

Meng Yuan, Deli Huang, Chang Chun D. Lee, Nicholas C. Wu, Abigail M. Jackson, Xueyong Zhu, Hejun Liu, Linghang Peng, Marit J. van Gils, Rogier W. Sanders, Dennis R. Burton, S. Momsen Reincke, Harald Prüss, Jakob Kreye, David Nemazee, Andrew B. Ward, Ian A. Wilson

Research output: Contribution to journalArticlepeer-review

Abstract

Neutralizing antibodies (nAbs) elicited against the receptor binding site (RBS) of the spike protein of wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are generally less effective against recent variants of concern. RBS residues Glu484, Lys417, and Asn501 are mutated in variants first described in South Africa (B.1.351) and Brazil (P.1). We analyzed their effects on angiotensin-converting enzyme 2 binding, as well as the effects of two of these mutations (K417N and E484K) on nAbs isolated from COVID-19 patients. Binding and neutralization of the two most frequently elicited antibody families (IGHV3-53/3-66 and IGHV1-2), which can both bind the RBS in alternative binding modes, are abrogated by K417N, E484K, or both. These effects can be structurally explained by their extensive interactions with RBS nAbs. However, nAbs to the more conserved, cross-neutralizing CR3022 and S309 sites were largely unaffected. The results have implications for next-generation vaccines and antibody therapies.

Original languageEnglish (US)
Article numbereabh1139
Pages (from-to)818-823
Number of pages6
JournalScience
Volume373
Issue number6556
DOIs
StatePublished - Aug 13 2021

Keywords

  • Coronavirus
  • COVID-19
  • severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
  • Novel coronavirus
  • 2019-nCoV
  • Pandemic

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants'. Together they form a unique fingerprint.

Cite this