TY - JOUR
T1 - Structural and biochemical characterization of 20-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32
AU - Doden, Heidi L.
AU - Pollet, Rebecca M.
AU - Mythen, Sean M.
AU - Wawrzak, Zdzislaw
AU - Devendran, Saravanan
AU - Cann, Isaac
AU - Koropatkin, Nicole M.
AU - Ridlon, Jason M.
N1 - Funding Information:
This work was supported by new faculty Start-up Grant Hatch ILLU-538-916 through the Department of Animal Sciences, University of Illinois at Urbana-Champaign (to J. M. R.). The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Publisher Copyright:
© 2019 Doden et al.
PY - 2019/8/9
Y1 - 2019/8/9
N2 - Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20-hydroxysteroid dehydrogenase (20-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20-dihydrocortisol. Recently, the gene encoding 20-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta. Here, the putative B. adolescentis 20-HSDH was cloned, overexpressed, and purified. 20-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20-HSDH in both the apo- and holo-forms at 2.0–2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
AB - Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20-hydroxysteroid dehydrogenase (20-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20-dihydrocortisol. Recently, the gene encoding 20-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta. Here, the putative B. adolescentis 20-HSDH was cloned, overexpressed, and purified. 20-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20-HSDH in both the apo- and holo-forms at 2.0–2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
UR - http://www.scopus.com/inward/record.url?scp=85070781023&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070781023&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA119.009390
DO - 10.1074/jbc.RA119.009390
M3 - Article
C2 - 31209107
AN - SCOPUS:85070781023
SN - 0021-9258
VL - 294
SP - 12040
EP - 12053
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -