TY - JOUR
T1 - Structural and biochemical characterization of 20-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32
AU - Doden, Heidi L.
AU - Pollet, Rebecca M.
AU - Mythen, Sean M.
AU - Wawrzak, Zdzislaw
AU - Devendran, Saravanan
AU - Cann, Isaac
AU - Koropatkin, Nicole M.
AU - Ridlon, Jason M.
N1 - Publisher Copyright:
© 2019 Doden et al.
PY - 2019/8/9
Y1 - 2019/8/9
N2 - Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20-hydroxysteroid dehydrogenase (20-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20-dihydrocortisol. Recently, the gene encoding 20-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta. Here, the putative B. adolescentis 20-HSDH was cloned, overexpressed, and purified. 20-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20-HSDH in both the apo- and holo-forms at 2.0–2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
AB - Anaerobic bacteria inhabiting the human gastrointestinal tract have evolved various enzymes that modify host-derived steroids. The bacterial steroid-17,20-desmolase pathway cleaves the cortisol side chain, forming pro-androgens predicted to impact host physiology. Bacterial 20-hydroxysteroid dehydrogenase (20-HSDH) regulates cortisol side-chain cleavage by reducing the C-20 carboxyl group on cortisol, yielding 20-dihydrocortisol. Recently, the gene encoding 20-HSDH in Butyricicoccus desmolans ATCC 43058 was reported, and a nonredundant protein search yielded a candidate 20-HSDH gene in Bifidobacterium adolescentis strain L2-32. B. adolescentis 20-HSDH could regulate cortisol side-chain cleavage by limiting pro-androgen formation in bacteria such as Clostridium scindens and 21-dehydroxylation by Eggerthella lenta. Here, the putative B. adolescentis 20-HSDH was cloned, overexpressed, and purified. 20-HSDH activity was confirmed through whole-cell and pure enzymatic assays, and it is specific for cortisol. Next, we solved the structures of recombinant 20-HSDH in both the apo- and holo-forms at 2.0–2.2 Å resolutions, revealing close overlap except for rearrangements near the active site. Interestingly, the structures contain a large, flexible N-terminal region that was investigated by gel-filtration chromatography and CD spectroscopy. This extended N terminus is important for protein stability because deletions of varying lengths caused structural changes and reduced enzymatic activity. A nonconserved extended N terminus was also observed in several short-chain dehydrogenase/reductase family members. B. adolescentis strains capable of 20-HSDH activity could alter glucocorticoid metabolism in the gut and thereby serve as potential probiotics for the management of androgen-dependent diseases.
UR - http://www.scopus.com/inward/record.url?scp=85070781023&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070781023&partnerID=8YFLogxK
U2 - 10.1074/jbc.RA119.009390
DO - 10.1074/jbc.RA119.009390
M3 - Article
C2 - 31209107
AN - SCOPUS:85070781023
SN - 0021-9258
VL - 294
SP - 12040
EP - 12053
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 32
ER -