Strong converse theorems using Rényi entropies

Felix Leditzky, Mark M. Wilde, Nilanjana Datta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We use a Rényi entropy method to prove a strong converse theorem for the task of quantum state redistribution. More precisely, we establish the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where the entanglement cost e and quantum communication cost q are the operational rates describing a state redistribution protocol. The strong converse property is deduced from explicit bounds on the fidelity of the protocol in terms of a Rényi generalization of the optimal rates. Hence, we identify candidates for the strong converse exponents for entanglement cost e and quantum communication cost q, respectively. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities to the fidelity of two quantum states.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2849-2853
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Externally publishedYes
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period7/10/167/15/16

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Strong converse theorems using Rényi entropies'. Together they form a unique fingerprint.

Cite this