TY - JOUR
T1 - Strengthening Nickel by In Situ Graphene Synthesis
AU - Zhang, Kaihao
AU - Poss, Matthew
AU - Chen, Ping Ju
AU - Tawfick, Sameh
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/12
Y1 - 2017/12
N2 - Owing to the superior strength and atomic thickness of graphene, it can in theory reinforce metals beyond the usual rule of mixtures bounds by constraining dislocations motion and strain localization at the grain boundaries. This unusual enhancement relies on the graphene's ability to conform to and wrap metal grains. This study experimentally probes the limits of this behavior and investigates the role of interface in designing superior graphene composites. Free-standing nickel–multilayer graphene (Ni–MLG) nanomembranes are fabricated by in situ chemical vapor deposition. Using nanoindentation, elastic modulus (285.16 GPa), maximum stress (2.35 GPa), and toughness (1407.26 Jm−2) are measured, and these values exceed the rule of mixtures bounds. The multi-frequency atomic force microscopy (AFM) is used to spatially map the elastic properties and topography of the MLG on Ni grain boundaries. This emerging characterization reveals that effective reinforcement is achieved when graphene conforms and bridges the grain texture. Nanoindentation and AFM confirm that these mechanisms are ineffective in non-conformally attached Ni–MLG composites, which exhibit significantly weaker mechanical behavior. These results guide the design of effective graphene composites by highlighting the importance of nanoscale roughness and interfaces, and clearly demonstrate the superiority of composite processing routes based on in situ graphene synthesis.
AB - Owing to the superior strength and atomic thickness of graphene, it can in theory reinforce metals beyond the usual rule of mixtures bounds by constraining dislocations motion and strain localization at the grain boundaries. This unusual enhancement relies on the graphene's ability to conform to and wrap metal grains. This study experimentally probes the limits of this behavior and investigates the role of interface in designing superior graphene composites. Free-standing nickel–multilayer graphene (Ni–MLG) nanomembranes are fabricated by in situ chemical vapor deposition. Using nanoindentation, elastic modulus (285.16 GPa), maximum stress (2.35 GPa), and toughness (1407.26 Jm−2) are measured, and these values exceed the rule of mixtures bounds. The multi-frequency atomic force microscopy (AFM) is used to spatially map the elastic properties and topography of the MLG on Ni grain boundaries. This emerging characterization reveals that effective reinforcement is achieved when graphene conforms and bridges the grain texture. Nanoindentation and AFM confirm that these mechanisms are ineffective in non-conformally attached Ni–MLG composites, which exhibit significantly weaker mechanical behavior. These results guide the design of effective graphene composites by highlighting the importance of nanoscale roughness and interfaces, and clearly demonstrate the superiority of composite processing routes based on in situ graphene synthesis.
KW - metal-graphene composite
KW - multi-functional material
KW - multilayer graphene
KW - nanoindentation
KW - toughness
UR - http://www.scopus.com/inward/record.url?scp=85026656504&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026656504&partnerID=8YFLogxK
U2 - 10.1002/adem.201700475
DO - 10.1002/adem.201700475
M3 - Article
AN - SCOPUS:85026656504
SN - 1438-1656
VL - 19
JO - Advanced Engineering Materials
JF - Advanced Engineering Materials
IS - 12
M1 - 1700475
ER -