Stratification of amyotrophic lateral sclerosis patients: A crowdsourcing approach

The ALS Stratification Consortium, Jian Peng

Research output: Contribution to journalArticlepeer-review

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.

Original languageEnglish (US)
Article number690
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Stratification of amyotrophic lateral sclerosis patients: A crowdsourcing approach'. Together they form a unique fingerprint.

Cite this