TY - JOUR
T1 - Stratification of amyotrophic lateral sclerosis patients
T2 - A crowdsourcing approach
AU - The ALS Stratification Consortium
AU - Kueffner, Robert
AU - Zach, Neta
AU - Bronfeld, Maya
AU - Norel, Raquel
AU - Atassi, Nazem
AU - Balagurusamy, Venkat
AU - Di Camillo, Barbara
AU - Chio, Adriano
AU - Cudkowicz, Merit
AU - Dillenberger, Donna
AU - Garcia-Garcia, Javier
AU - Hardiman, Orla
AU - Hoff, Bruce
AU - Knight, Joshua
AU - Leitner, Melanie L.
AU - Li, Guang
AU - Mangravite, Lara
AU - Norman, Thea
AU - Wang, Liuxia
AU - Xiao, Jinfeng
AU - Fang, Wen Chieh
AU - Peng, Jian
AU - Yang, Chen
AU - Chang, Huan Jui
AU - Stolovitzky, Gustavo
AU - Alkallas, Rached
AU - Anghel, Catalina
AU - Avril, Jeanne
AU - Bacardit, Jaume
AU - Balser, Barbara
AU - Balser, John
AU - Bar-Sinai, Yoav
AU - Ben-David, Noa
AU - Ben-Zion, Eyal
AU - Bliss, Robin
AU - Cai, Jialu
AU - Chernyshev, Anatoly
AU - Chiang, Jung Hsien
AU - Chicco, Davide
AU - Corriveau, Bhavna Ahuja Nicole
AU - Dai, Junqiang
AU - Deshpande, Yash
AU - Desplats, Eve
AU - Durgin, Joseph S.
AU - Espiritu, Shadrielle Melijah G.
AU - Fan, Fan
AU - Fevrier, Philippe
AU - Fridley, Brooke L.
AU - Godzik, Adam
AU - Golińska, Agnieszka
N1 - Publisher Copyright:
© The Author(s) 2019.
PY - 2019
Y1 - 2019
N2 - Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
AB - Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
UR - http://www.scopus.com/inward/record.url?scp=85060520844&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060520844&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-36873-4
DO - 10.1038/s41598-018-36873-4
M3 - Article
C2 - 30679616
AN - SCOPUS:85060520844
SN - 2045-2322
VL - 9
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 690
ER -