Stomatal function and physiology

Tracy Lawson, James I.L. Morison

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

This chapter illustrates the function and physiology of stomata to clarify the role stomata plays in determining carbon assimilation. Stomata are small adjustable pores found in large numbers on the surface of most aerial parts of higher plants. Leaf gas exchange is controlled by the stomata. The diffusion rate of gases into or out of the leaf, or any other plant part, depends on the concentration gradient and the diffusive resistance of the pathway. The resistance of the stomatal pathway depends on the geometry of the pores as well as their frequency. Stomatal behavior directly modifies the CO2 assimilation rate and transpiration rate and consequently affects plant water and carbon status. The chapter also describes the effects of several environmental factors such as CO2, humidity, light and temperature on stomatal movements and the consequences for photosynthesis. A change in the concentration of CO2 leads to a change in the aperture of the stomata. The transpiration rate increases linearly with leaf-to-air vapor pressure difference (VPD) caused either by changes in air vapor pressure or by leaf temperature affecting the vapor pressure inside the leaf. A change in light intensity may simultaneously change photosynthetic rate and leaf temperature that modifies transpiration rate and leaf water status. Finally, the chapter illustrates several examples of modern techniques for studying stomatal physiology.

Original languageEnglish (US)
Title of host publicationThe Evolution of Plant Physiology
Subtitle of host publicationFrom whole plants to ecosystems
PublisherElsevier
Pages217-242
Number of pages26
ISBN (Electronic)9780123395528
DOIs
StatePublished - Jan 1 2004
Externally publishedYes

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences
  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine

Fingerprint

Dive into the research topics of 'Stomatal function and physiology'. Together they form a unique fingerprint.

Cite this