Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics

Gennady Gorin, Mengyu Wang, Ido Golding, Heng Xu

Research output: Contribution to journalArticlepeer-review


Recent advances in single-molecule fluorescent imaging have enabled quantitative measurements of transcription at a single gene copy, yet an accurate understanding of transcriptional kinetics is still lacking due to the difficulty of solving detailed biophysical models. Here we introduce a stochastic simulation and statistical inference platform for modeling detailed transcriptional kinetics in prokaryotic systems, which has not been solved analytically. The model includes stochastic two-state gene activation, mRNA synthesis initiation and stepwise elongation, release to the cytoplasm, and stepwise co-transcriptional degradation. Using the Gillespie algorithm, the platform simulates nascent and mature mRNA kinetics of a single gene copy and predicts fluorescent signals measurable by time-lapse single-cell mRNA imaging, for different experimental conditions. To approach the inverse problem of estimating the kinetic parameters of the model from experimental data, we develop a heuristic optimization method based on the genetic algorithm and the empirical distribution of mRNA generated by simulation. As a demonstration, we show that the optimization algorithm can successfully recover the transcriptional kinetics of simulated and experimental gene expression data. The platform is available as a MATLAB software package at

Original languageEnglish (US)
Article numbere0230736
JournalPloS one
Issue number3
StatePublished - 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Stochastic simulation and statistical inference platform for visualization and estimation of transcriptional kinetics'. Together they form a unique fingerprint.

Cite this