Abstract
Regularized empirical risk minimization problem with linear predictor appears frequently in machine learning. In this paper, we propose a new stochastic primal-dual method to solve this class of problems. Different from existing methods, our proposed methods only require O(1) operations in each iteration. We also develop a variance-reduction variant of the algorithm that converges linearly. Numerical experiments suggest that our methods are faster than existing ones such as proximal SGD, SVRG and SAGA on high-dimensional problems.
Original language | English (US) |
---|---|
Pages (from-to) | 8366-8375 |
Number of pages | 10 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
State | Published - 2018 |
Externally published | Yes |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: Dec 2 2018 → Dec 8 2018 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing