Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes

Ohad Shamir, Tong Zhang

Research output: Contribution to conferencePaperpeer-review

Abstract

Stochastic Gradient Descent (SGD) is one of the simplest and most popular stochastic optimization methods. While it has already been theoretically studied for decades, the classical analysis usually required non-trivial smoothness assumptions, which do not apply to many modern applications of SGD with non-smooth objective functions such as support vector machines. In this paper, we investigate the performance of SGD without such smoothness assumptions, as well as a running average scheme to convert the SGD iterates to a solution with optimal optimization accuracy. In this framework, we prove that after T rounds, the suboptimality of the last SGD iterate scales as O(log(T)/√T) for non-smooth convex objective functions, and O(log(T)/T) in the non-smooth strongly convex case. To the best of our knowledge, these are the first bounds of this kind, and almost match the minimax-optimal rates obtainable by appropriate averaging schemes. We also propose a new and simple averaging scheme, which not only attains optimal rates, but can also be easily computed on-the-fly (in contrast, the suffix averaging scheme proposed in Rakhlin et al. (2011) is not as simple to implement). Finally, we provide some experimental illustrations.

Original languageEnglish (US)
Pages71-79
Number of pages9
StatePublished - 2013
Externally publishedYes
Event30th International Conference on Machine Learning, ICML 2013 - Atlanta, GA, United States
Duration: Jun 16 2013Jun 21 2013

Other

Other30th International Conference on Machine Learning, ICML 2013
Country/TerritoryUnited States
CityAtlanta, GA
Period6/16/136/21/13

ASJC Scopus subject areas

  • Human-Computer Interaction
  • Sociology and Political Science

Fingerprint

Dive into the research topics of 'Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes'. Together they form a unique fingerprint.

Cite this