Stochastic Analysis of Rolling Resistance Energy Dissipation for a Tractor-Trailer Model

Research output: Contribution to journalArticle

Abstract

Rolling resistance because of road roughness is often the largest contributor to energy consumption in the environmental assessment of pavement life cycle. Although fuel consumption of passenger vehicles caused by roadway roughness is well studied, further research is needed for truck fuel consumption models utilizing mechanistic approaches. Existing models estimating trucks’ excess fuel consumption because of rolling resistance are based on empirical models or simplified mechanistic models such as the quarter car model. Such approaches may not fully capture the complex dynamic motion of a tractor-trailer. This study suggests a stochastic method utilizing the analytical solution based on a tractor-trailer model to calculate excess truck fuel consumption because of roughness and speed. The illustrative examples show that excess truck fuel consumption tends to increase nonlinearly with roughness; fuel consumption increases with speed but drops after 104 km/h (65 mph) because of a rapid increase in aerodynamic drag at very high speeds. The effect of new generation wide-base tires (NG-WBT) in lieu of the standard dual tire assembly was studied using the introduced model. Results indicate that NG-WBT reduced excess fuel consumption because of roughness by 11% and 8% at 56 km/h and 80 km/h (35 mph and 50 mph), respectively. Finally, Monte Carlo simulation was conducted at two speeds and the simulation results were in agreement with the analytical solution. The results from the developed model and the validation using illustrative examples confirm the impact of roughness and speed on truck fuel consumption in a quantitative manner.

Original languageEnglish (US)
JournalTransportation Research Record
DOIs
StatePublished - Jan 1 2019

Fingerprint

Rolling resistance
Light trailers
Fuel consumption
Energy dissipation
Trucks
Surface roughness
Tires
Tractors (truck)
Aerodynamic drag
Pavements
Life cycle
Railroad cars
Energy utilization

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Mechanical Engineering

Cite this

@article{1213f2573d3342ea9eb0ebf7fe8022b2,
title = "Stochastic Analysis of Rolling Resistance Energy Dissipation for a Tractor-Trailer Model",
abstract = "Rolling resistance because of road roughness is often the largest contributor to energy consumption in the environmental assessment of pavement life cycle. Although fuel consumption of passenger vehicles caused by roadway roughness is well studied, further research is needed for truck fuel consumption models utilizing mechanistic approaches. Existing models estimating trucks’ excess fuel consumption because of rolling resistance are based on empirical models or simplified mechanistic models such as the quarter car model. Such approaches may not fully capture the complex dynamic motion of a tractor-trailer. This study suggests a stochastic method utilizing the analytical solution based on a tractor-trailer model to calculate excess truck fuel consumption because of roughness and speed. The illustrative examples show that excess truck fuel consumption tends to increase nonlinearly with roughness; fuel consumption increases with speed but drops after 104 km/h (65 mph) because of a rapid increase in aerodynamic drag at very high speeds. The effect of new generation wide-base tires (NG-WBT) in lieu of the standard dual tire assembly was studied using the introduced model. Results indicate that NG-WBT reduced excess fuel consumption because of roughness by 11{\%} and 8{\%} at 56 km/h and 80 km/h (35 mph and 50 mph), respectively. Finally, Monte Carlo simulation was conducted at two speeds and the simulation results were in agreement with the analytical solution. The results from the developed model and the validation using illustrative examples confirm the impact of roughness and speed on truck fuel consumption in a quantitative manner.",
author = "Seunggu Kang and Hasan Ozer and Al-Qadi, {Imad L} and Spencer, {B F}",
year = "2019",
month = "1",
day = "1",
doi = "10.1177/0361198119840344",
language = "English (US)",
journal = "Transportation Research Record",
issn = "0361-1981",
publisher = "US National Research Council",

}

TY - JOUR

T1 - Stochastic Analysis of Rolling Resistance Energy Dissipation for a Tractor-Trailer Model

AU - Kang, Seunggu

AU - Ozer, Hasan

AU - Al-Qadi, Imad L

AU - Spencer, B F

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Rolling resistance because of road roughness is often the largest contributor to energy consumption in the environmental assessment of pavement life cycle. Although fuel consumption of passenger vehicles caused by roadway roughness is well studied, further research is needed for truck fuel consumption models utilizing mechanistic approaches. Existing models estimating trucks’ excess fuel consumption because of rolling resistance are based on empirical models or simplified mechanistic models such as the quarter car model. Such approaches may not fully capture the complex dynamic motion of a tractor-trailer. This study suggests a stochastic method utilizing the analytical solution based on a tractor-trailer model to calculate excess truck fuel consumption because of roughness and speed. The illustrative examples show that excess truck fuel consumption tends to increase nonlinearly with roughness; fuel consumption increases with speed but drops after 104 km/h (65 mph) because of a rapid increase in aerodynamic drag at very high speeds. The effect of new generation wide-base tires (NG-WBT) in lieu of the standard dual tire assembly was studied using the introduced model. Results indicate that NG-WBT reduced excess fuel consumption because of roughness by 11% and 8% at 56 km/h and 80 km/h (35 mph and 50 mph), respectively. Finally, Monte Carlo simulation was conducted at two speeds and the simulation results were in agreement with the analytical solution. The results from the developed model and the validation using illustrative examples confirm the impact of roughness and speed on truck fuel consumption in a quantitative manner.

AB - Rolling resistance because of road roughness is often the largest contributor to energy consumption in the environmental assessment of pavement life cycle. Although fuel consumption of passenger vehicles caused by roadway roughness is well studied, further research is needed for truck fuel consumption models utilizing mechanistic approaches. Existing models estimating trucks’ excess fuel consumption because of rolling resistance are based on empirical models or simplified mechanistic models such as the quarter car model. Such approaches may not fully capture the complex dynamic motion of a tractor-trailer. This study suggests a stochastic method utilizing the analytical solution based on a tractor-trailer model to calculate excess truck fuel consumption because of roughness and speed. The illustrative examples show that excess truck fuel consumption tends to increase nonlinearly with roughness; fuel consumption increases with speed but drops after 104 km/h (65 mph) because of a rapid increase in aerodynamic drag at very high speeds. The effect of new generation wide-base tires (NG-WBT) in lieu of the standard dual tire assembly was studied using the introduced model. Results indicate that NG-WBT reduced excess fuel consumption because of roughness by 11% and 8% at 56 km/h and 80 km/h (35 mph and 50 mph), respectively. Finally, Monte Carlo simulation was conducted at two speeds and the simulation results were in agreement with the analytical solution. The results from the developed model and the validation using illustrative examples confirm the impact of roughness and speed on truck fuel consumption in a quantitative manner.

UR - http://www.scopus.com/inward/record.url?scp=85067882230&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067882230&partnerID=8YFLogxK

U2 - 10.1177/0361198119840344

DO - 10.1177/0361198119840344

M3 - Article

AN - SCOPUS:85067882230

JO - Transportation Research Record

JF - Transportation Research Record

SN - 0361-1981

ER -