Stimulus-elicited connectivity influences resting-state connectivity years later in human development: A prospective study

Laurel Joy Gabard-Durnam, Dylan Grace Gee, Bonnie Goff, Jessica Flannery, Eva Telzer, Kathryn Leigh Humphreys, Daniel Stephen Lumian, Dominic Stephen Fareri, Christina Caldera, Nim Tottenham

Research output: Contribution to journalArticlepeer-review


Although the functional architecture of the brain is indexed by resting-state connectivity networks, little is currently known about the mechanisms through which these networks assemble into stable mature patterns. The current study posits and tests the long-term phasic molding hypothesis that resting-state networks are gradually shaped by recurring stimulus-elicited connectivity across development by examining how both stimulus-elicited and resting-state functional connections of the human brain emerge over development at the systems level. Using a sequential design following 4- to 18-year-olds over a 2 year period, we examined the predictive associations between stimulus-elicited and resting-state connectivity in amygdala-cortical circuitry as an exemplar case (given this network's protracted development across these ages). Age-related changes in amygdala functional connectivity converged on the same regions of medial prefrontal cortex (mPFC) and inferior frontal gyrus when elicited by emotional stimuli and when measured at rest. Consistent with the long-term phasic molding hypothesis, prospective analyses for both connections showed that the magnitude of an individual's stimulus-elicited connectivity unidirectionally predicted resting-state functional connectivity 2 years later. For the amygdala-mPFC connection, only stimulus-elicited connectivity during childhood and the transition to adolescence shaped future resting-state connectivity, consistent with a sensitive period ending with adolescence for the amygdala-mPFC circuit. Together, these findings suggest that resting-state functional architecture may arise from phasic patterns of functional connectivity elicited by environmental stimuli over the course of development on the order of years.

Original languageEnglish (US)
Pages (from-to)4771-4784
Number of pages14
JournalJournal of Neuroscience
Issue number17
StatePublished - Apr 27 2016


  • Amygdala
  • Development
  • Prefrontal cortex
  • Prospective
  • Resting-state connectivity
  • Stimulus-elicited connectivity

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'Stimulus-elicited connectivity influences resting-state connectivity years later in human development: A prospective study'. Together they form a unique fingerprint.

Cite this