Stick-slip-slap interface response simulation: Formulation and application of a general joint/interface element

Yaxin Song, D. Michael McFarland, Lawrence A. Bergman, Alexander F. Vakakis

Research output: Contribution to journalReview article

Abstract

A general interface element is developed for dynamic response analysis of structures with jointed interfaces, which can account for damping due to both impact and friction. Contact effects are included through a segment-to-segment contact model which considers the stick-slip-slap behavior at every point along the joint interface. A nonlinear friction law is adopted at the interface to describe microscopic relative motion due to the deformation of the asperities on the interface. Numerical examples demonstrate that the general joint interface element is capable of accounting for both friction and impact damping in jointed interfaces, as well as capturing the transfer of vibrational energy from low frequency to high during impact. The development of an interface slip zone is a combined result of the actual friction traction and pressure distribution along the interfaces. It is shown that the general joint interface element is able to address this effectively, and the segment-to-segment contact model adopted here allows the general interface element to capture very detailed stick-slip behavior along the interfaces even with a coarse mesh.

Original languageEnglish (US)
Pages (from-to)153-170
Number of pages18
JournalCMES - Computer Modeling in Engineering and Sciences
Volume10
Issue number2
StatePublished - Nov 1 2005

Keywords

  • Contact model
  • Finite element
  • Friction
  • Interface
  • Joint

ASJC Scopus subject areas

  • Software
  • Modeling and Simulation
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Stick-slip-slap interface response simulation: Formulation and application of a general joint/interface element'. Together they form a unique fingerprint.

  • Cite this