Stem cells of the beetle midgut epithelium

James B. Nardi, Charles Mark Bee, Lou Ann Miller

Research output: Contribution to journalArticle

Abstract

At the completion of metamorphosis, adult insect cells have traditionally been assumed to halt cell divisions and terminally differentiate. While this model of differentiation holds for adult ectodermal epithelia that secrete cuticular specializations of exoskeletons, adult endodermal epithelia are populated by discrete three-dimensional aggregates of stem cells that continue to divide and differentiate after adult emergence. Aggregates of these presumptive adult stem cells are scattered throughout larval and pupal midgut monolayers. At the beginning of adult development (pupal-adult apolysis), the number of cells within each aggregate begins to increase rapidly. Dividing cells form three-dimensional, coherent populations that project as regenerative pouches of stem cells into the hemocoel surrounding the midgut. Stem cell pouches are regularly spaced throughout endodermal monolayers, having adopted a spacing pattern suggesting that each incipient pouch inhibits the formation of a similar pouch within a certain radius of itself-a process referred to as lateral inhibition. At completion of adult development (pupal-adult ecdysis), a distinct basal-luminal polarity has been established within each regenerative pouch. Dividing stem cells occupying the basal region are arranged in three-dimensional aggregates. As these are displaced toward the lumen, they transform into two-dimensional monolayers of differentiated epithelial cells whose apical surfaces are covered by microvilli. This organization of stem cell pouches in insect midguts closely parallels that of regenerative crypts in mammalian intestines.

Original languageEnglish (US)
Pages (from-to)296-303
Number of pages8
JournalJournal of insect physiology
Volume56
Issue number3
DOIs
StatePublished - Mar 1 2010

Keywords

  • Endodermal monolayer
  • Lateral inhibition
  • Midgut epithelium
  • Spacing patterns
  • Stem cells

ASJC Scopus subject areas

  • Physiology
  • Insect Science

Fingerprint Dive into the research topics of 'Stem cells of the beetle midgut epithelium'. Together they form a unique fingerprint.

  • Cite this