Abstract
The existence of large image datasets such as photos on the World Wide Web make it possible to build powerful generic models for low-level image attributes like color using simple histogram learning techniques. We describe the construction of color models for skin and non-skin classes from a dataset of nearly 1 billion labeled pixels. These classes exhibit a surprising degree of separability which we exploit by building a skin pixel detector that achieves an equal error rate of 88%. We compare the performance of histogram and mixture models in skin detection and find histogram models to be superior in accuracy and computational cost. Using aggregate features computed from the skin detector we build a remarkably effective detector for naked people. We believe this work is the most comprehensive and detailed exploration of skin color models to date.
Original language | English (US) |
---|---|
Pages (from-to) | 274-280 |
Number of pages | 7 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
Volume | 1 |
State | Published - 1999 |
Externally published | Yes |
Event | Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99) - Fort Collins, CO, USA Duration: Jun 23 1999 → Jun 25 1999 |
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition