State-space support for path-based reward variables

W. Douglas Obal, William H Sanders

Research output: Contribution to journalConference article

Abstract

Many sophisticated formalisms exist for specifying complex system behaviors, but methods for specifying performance and dependability variables have remained quite primitive. To cope with this problem, modelers often must augment system models with extra state information and event types to support particular variables. This often leads to models that are non-intuitive, and must be changed to support different variables. To address this problem, we extend the array of performance measures that may be derived from a given system model, by developing new performance measure specification and model construction techniques. Specifically, we introduce a class of path-based reward variables, and show how various performance measures may be specified using these variables. Path-based reward variables extend the previous work with reward structures to allow rewards to be accumulated based on sequences of states and transitions. To maintain the relevant history, we introduce the concept of a path automaton, whose state transitions are based on the system model state and transitions. Furthermore, we present a new procedure for constructing state spaces and the associated transition rate matrices that support path-based reward variables. Our new procedure takes advantage of the path automaton to allow a single system model to be used as the basis of multiple performance measures that would otherwise require separate models or a single more complicated model.

Original languageEnglish (US)
Pages (from-to)233-251
Number of pages19
JournalPerformance Evaluation
Volume35
Issue number3
DOIs
StatePublished - May 1999

ASJC Scopus subject areas

  • Software
  • Modeling and Simulation
  • Hardware and Architecture
  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'State-space support for path-based reward variables'. Together they form a unique fingerprint.

  • Cite this