State-based transport and scattering properties for the O + O2 system

Sharanya Subramaniam, Kelly A. Stephani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A methodology is outlined for computing state-resolved transport collision integrals from potential energy surfaces (PES). This method is then applied to the O+O2 system to compute the vibrational state to state (StS) collisional transport quantities based on the Varandas and Pais PES [1] and the recent ab initio surfaces developed by Varga et al. [2]. State-based potentials that describe the interaction of an O atom with an O2 molecule at a particular vibrational level is extracted from the Varandas and Pais PES and the singlet 1 1 A′ surface by Varga et al., and are used to compute StS scattering profiles. Using these scattering results, StS diffusion cross-sections and the state-based ω(1,1) collision integrals are computed for the two PESs used in this study. The cross-sections and collision integrals showed a dependence on the vibrational state of the O2 molecule. Further, differences were also observed in these transport collisional properties for the two PESs considered.

Original languageEnglish (US)
Title of host publication31st International Symposium on Rarefied Gas Dynamics, RGD 2018
EditorsDuncan Lockerby, David R. Emerson, Lei Wu, Yonghao Zhang
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735418745
DOIs
StatePublished - Aug 5 2019
Event31st International Symposium on Rarefied Gas Dynamics, RGD 2018 - Glasgow, United Kingdom
Duration: Jul 23 2018Jul 27 2018

Publication series

NameAIP Conference Proceedings
Volume2132
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference31st International Symposium on Rarefied Gas Dynamics, RGD 2018
Country/TerritoryUnited Kingdom
CityGlasgow
Period7/23/187/27/18

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'State-based transport and scattering properties for the O + O2 system'. Together they form a unique fingerprint.

Cite this