Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption

A. Malvandi, F. Hedayati, G. Domairry

Research output: Contribution to journalArticlepeer-review

Abstract

This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption , stretching parameter ε, thermophoresis N t, Lewis number Le, Brownian motion N b, and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation > 0, despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates.

Original languageEnglish (US)
Article number764827
JournalJournal of Thermodynamics
Volume1
Issue number1
DOIs
StatePublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption'. Together they form a unique fingerprint.

Cite this