Stabilizing a switched linear system with disturbance by sampled-data quantized feedback

Guosong Yang, Daniel Liberzon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We study the problem of stabilizing a switched linear system with disturbance using sampled and quantized measurements of its state. The switching is assumed to be slow in the sense of combined dwell-time and average dwell-time, while the active mode is unknown except at sampling times. Each mode of the switched linear system is assumed to be stabilizable, and the magnitude of the disturbance is constrained by a known bound. A communication and control strategy is designed to guarantee bounded-input-bounded-state (BIBS) stability of the switched linear system and an exponential convergence rate with respect to the initial state, providing the data rate satisfies certain lower bounds. Such lower bounds are established by expanding the over-approximation bounds of reachable sets over sampling intervals derived in a previous paper to accommodate effects of the disturbance.

Original languageEnglish (US)
Title of host publicationACC 2015 - 2015 American Control Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2193-2198
Number of pages6
ISBN (Electronic)9781479986842
DOIs
StatePublished - Jul 28 2015
Event2015 American Control Conference, ACC 2015 - Chicago, United States
Duration: Jul 1 2015Jul 3 2015

Publication series

NameProceedings of the American Control Conference
Volume2015-July
ISSN (Print)0743-1619

Other

Other2015 American Control Conference, ACC 2015
Country/TerritoryUnited States
CityChicago
Period7/1/157/3/15

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Stabilizing a switched linear system with disturbance by sampled-data quantized feedback'. Together they form a unique fingerprint.

Cite this