Stability properties of infection diffusion dynamics over directed networks

Ali Khanafer, Tamer Basar, Bahman Gharesifard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We analyze the stability properties of a susceptible-infected-susceptible diffusion model over directed networks. Similar to the majority of infection spread dynamics, this model exhibits a threshold phenomenon. When the curing rates in the network are high, the all-healthy state is globally asymptotically stable (GAS). Otherwise, an endemic state arises and the entire network could become infected. Using notions from positive systems theory, we prove that the endemic state is GAS in strongly connected networks. When the graph is weakly connected, we provide conditions for the existence, uniqueness, and global asymptotic stability of weak and strong endemic states. Several simulations demonstrate our results.

Original languageEnglish (US)
Title of host publication53rd IEEE Conference on Decision and Control,CDC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6215-6220
Number of pages6
EditionFebruary
ISBN (Electronic)9781479977468
DOIs
StatePublished - 2014
Event2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States
Duration: Dec 15 2014Dec 17 2014

Publication series

NameProceedings of the IEEE Conference on Decision and Control
NumberFebruary
Volume2015-February
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Other

Other2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014
Country/TerritoryUnited States
CityLos Angeles
Period12/15/1412/17/14

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Stability properties of infection diffusion dynamics over directed networks'. Together they form a unique fingerprint.

Cite this