TY - JOUR
T1 - Stability of epidemic models over directed graphs
T2 - A positive systems approach
AU - Khanafer, Ali
AU - Başar, Tamer
AU - Gharesifard, Bahman
N1 - Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2016/12/1
Y1 - 2016/12/1
N2 - We study the stability properties of a susceptible–infected–susceptible (SIS) diffusion model, so-called the n-intertwined Markov model, over arbitrary directed network topologies. As in the majority of the work on infection spread dynamics, this model exhibits a threshold phenomenon. When the curing rates in the network are high, the disease-free equilibrium is the unique equilibrium over the network. Otherwise, an endemic equilibrium state emerges, where some infection remains within the network. Using notions from positive systems theory, we provide novel proofs for the global asymptotic stability of the equilibrium points in both cases over strongly connected networks based on the value of the basic reproduction number, a fundamental quantity in the study of epidemics. When the network topology is weakly connected, we provide conditions for the existence, uniqueness, and global asymptotic stability of an endemic state, and study the stability of the disease-free equilibrium. Finally, we demonstrate that the n-intertwined Markov model can be viewed as a best-response dynamical system of a concave game among the nodes. This characterization allows us to cast new infection spread dynamics; additionally, we provide a sufficient condition for global convergence to the disease-free equilibrium, which can be checked in a distributed fashion.
AB - We study the stability properties of a susceptible–infected–susceptible (SIS) diffusion model, so-called the n-intertwined Markov model, over arbitrary directed network topologies. As in the majority of the work on infection spread dynamics, this model exhibits a threshold phenomenon. When the curing rates in the network are high, the disease-free equilibrium is the unique equilibrium over the network. Otherwise, an endemic equilibrium state emerges, where some infection remains within the network. Using notions from positive systems theory, we provide novel proofs for the global asymptotic stability of the equilibrium points in both cases over strongly connected networks based on the value of the basic reproduction number, a fundamental quantity in the study of epidemics. When the network topology is weakly connected, we provide conditions for the existence, uniqueness, and global asymptotic stability of an endemic state, and study the stability of the disease-free equilibrium. Finally, we demonstrate that the n-intertwined Markov model can be viewed as a best-response dynamical system of a concave game among the nodes. This characterization allows us to cast new infection spread dynamics; additionally, we provide a sufficient condition for global convergence to the disease-free equilibrium, which can be checked in a distributed fashion.
KW - Directed graphs
KW - Interconnected systems
KW - Networks
KW - Nonlinear control systems
KW - Stability analysis
UR - http://www.scopus.com/inward/record.url?scp=84989184541&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989184541&partnerID=8YFLogxK
U2 - 10.1016/j.automatica.2016.07.037
DO - 10.1016/j.automatica.2016.07.037
M3 - Article
AN - SCOPUS:84989184541
SN - 0005-1098
VL - 74
SP - 126
EP - 134
JO - Automatica
JF - Automatica
ER -