Spontaneously formed porous and composite materials

Serena A. Corr, Daniel P. Shoemaker, Eric S. Toberer, Ram Seshadri

Research output: Contribution to journalArticlepeer-review


In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described.

Original languageEnglish (US)
Pages (from-to)1413-1422
Number of pages10
JournalJournal of Materials Chemistry
Issue number8
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • Materials Chemistry


Dive into the research topics of 'Spontaneously formed porous and composite materials'. Together they form a unique fingerprint.

Cite this