Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior

A. R M Nabiul Afrooz, Sean T. Sivalapalan, Catherine J. Murphy, Saber M. Hussain, John J. Schlager, Navid B. Saleh

Research output: Contribution to journalArticlepeer-review


The influence of shape on nanomaterial aggregation and deposition was systematically studied with poly-acrylic acid (PAA) coated uniform-sized gold nanospheres (AuNSs) and nanorods (AuNRs). Time resolved dynamic light scattering was employed to study their aggregation kinetics in a wide range of mono- and di-valent electrolyte conditions. Results indicated that PAA coated AuNSs have higher aggregation propensity compared to anisotropic PAA coated AuNRs, as observed through critical coagulation concentration (CCC). The CCC values were estimated as 50mM NaCl and 1.8mM CaCl2 for AuNS, which showed substantial increase to 250mM NaCl and 7mM CaCl2 for anisotropic AuNRs. Though electrokinetic behavior showed similar surface potential for the spherical and rod-shaped materials, the geometric differences between the samples have likely resulted in unique conformation of the PAA coatings, leading to different magnitudes of steric hindrances and hence yielding the observed aggregation behavior. The deposition kinetics was monitored using the quartz crystal microbalance with dissipation technique. AuNRs showed relatively slower deposition compared to AuNSs for low electrolytes concentrations. With the increase in electrolyte concentration, the differences in deposition rates between spheres and rods diminished. The results from this study showed that the shape of nanomaterials can influence interfacial properties and result in unique aggregation and deposition behavior under typical aquatic conditions.

Original languageEnglish (US)
Pages (from-to)93-98
Number of pages6
Issue number1
StatePublished - 2013


  • Aggregation
  • Deposition
  • Gold nanorods
  • Gold nanospheres
  • Poly(acrylic acid)
  • Shape

ASJC Scopus subject areas

  • Environmental Chemistry
  • Chemistry(all)


Dive into the research topics of 'Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior'. Together they form a unique fingerprint.

Cite this