Spectral Analysis of a Cylinder Wake Interacting with Coherent Structures in a Turbulent Boundary Layer

Elizabeth Torres De Jesús, Palash Waghmare, Theresa Saxton-Fox

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The spectral and spatial behavior of the wake of a small cylinder immersed in a turbulent boundary layer at different wall-normal heights is studied and compared to a canonical turbulent boundary layer. Time-resolved particle image velocimetry measurements were taken downstream of the position where the cylinder is immersed. Measurements were also taken in of the unperturbed turbulent boundary layer in the same region without the cylinder for the same freestream velocity. The pre-multiplied energy spectra was computed for the seven cases and compared. Changes to the spectral content of the wake and of the boundary layer were observed for cases where the cylinder was nearer to the wall, while little interaction was observed for cases with the cylinder outside of the boundary layer thickness. Spectral proper orthogonal decomposition modes were calculated at wavelengths relevant to the wake vortex shedding and to the energetic turbulent structures and modifications to the modes were observed for cases with strong interaction. Vortex detection methods were used to visualize the wake and suggested that both a breakdown of periodicity of the vortex spacing and an overall spatial meandering of the wake may be responsible for the spectral modifications observed.

Original languageEnglish (US)
Title of host publicationAIAA SciTech Forum and Exposition, 2024
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624107115
DOIs
StatePublished - 2024
Externally publishedYes
EventAIAA SciTech Forum and Exposition, 2024 - Orlando, United States
Duration: Jan 8 2024Jan 12 2024

Publication series

NameAIAA SciTech Forum and Exposition, 2024

Conference

ConferenceAIAA SciTech Forum and Exposition, 2024
Country/TerritoryUnited States
CityOrlando
Period1/8/241/12/24

ASJC Scopus subject areas

  • Aerospace Engineering

Fingerprint

Dive into the research topics of 'Spectral Analysis of a Cylinder Wake Interacting with Coherent Structures in a Turbulent Boundary Layer'. Together they form a unique fingerprint.

Cite this