Abstract
We present a general framework of integrating multi modal sensory signals for spatial temporal pattern recognition. Statistical methods are used to model time varying events in a collaborative manner such that the inter-modal CO-occurrence are taken into account. We discuss various data fusion strategics, modeling of the inter-modal correlations and extracting statistical parameters for multi-modal models. A bimodal speech recognition system is implemented. A speaker-independent experiment is carried out to test the audio-visual speech recognizer under different kinds of noises from a noise database. Consistent improvements of word recognition accuracy (WRA) are achieved using a cross-validation scheme over different signal-to-noise ratios.
Original language | English (US) |
---|---|
Pages | 1073-1076 |
Number of pages | 4 |
State | Published - 2000 |
Event | 2000 IEEE International Conference on Multimedia and Expo (ICME 2000) - New York, NY, United States Duration: Jul 30 2000 → Aug 2 2000 |
Other
Other | 2000 IEEE International Conference on Multimedia and Expo (ICME 2000) |
---|---|
Country/Territory | United States |
City | New York, NY |
Period | 7/30/00 → 8/2/00 |
ASJC Scopus subject areas
- Engineering(all)