Abstract

This paper addresses the denoising problem associated with magnetic resonance spectroscopic imaging (MRSI), where low signal-to-noise ratio (SNR) has been a critical problem. A new scheme is proposed, which exploits two low-rank structures that exist in MRSI data, one due to partial separability and the other is due to linear predictability. Experimental results from practical data demonstrate that the proposed method provides an effective way to denoise MRSI data while preserving spatial-spectral features in a wide range of SNR values.

Original languageEnglish (US)
Title of host publication2011 8th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI'11
Pages857-860
Number of pages4
DOIs
StatePublished - 2011
Event2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11 - Chicago, IL, United States
Duration: Mar 30 2011Apr 2 2011

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Other

Other2011 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI'11
Country/TerritoryUnited States
CityChicago, IL
Period3/30/114/2/11

Keywords

  • Cadzow enhancement
  • denoising
  • low-rank approximation
  • MR spectroscopic imaging
  • partially-separable functions

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Spatiotemporal denoising of MR spectroscopic imaging data by low-rank approximations'. Together they form a unique fingerprint.

Cite this