Dynamic magnetic resonance imaging (DS-MRI) has been recognized as a promising method for visualizing articulatory motion of speech in scientific research and clinical applications. However, characterization of the gestural and acoustical properties of the vocal tract remains a challenging task for DS-MRI because it requires: 1) reconstructing high-quality spatiotemporal images by incorporating stronger prior knowledge; and 2) quantitatively interpreting the reconstructed images that contain great motion variability. This work presents a novel imaging method that simultaneously meets both requirements by integrating a spatiotemporal atlas into a Partial Separability (PS) model-based imaging framework. Through the use of an atlas-driven sparsity constraint, this method is capable of capturing high-quality articulatory dynamics at an imaging speed of 102 frames per second and a spatial resolution of 2.2 × 2.2 mm2. Moreover, the proposed method enables quantitative characterization of variability of speech motion, compared to the generic motion pattern across all subjects, through the spatial residual components.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2016
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor Gimi, Andrzej Krol
ISBN (Electronic)9781510600232
StatePublished - 2016
EventMedical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging - San Diego, United States
Duration: Mar 1 2016Mar 3 2016

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


OtherMedical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging
Country/TerritoryUnited States
CitySan Diego


  • Dynamic MRI
  • Partial separability
  • Sparsity constraint
  • Spatiotemporal atlas
  • Speech imaging

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials


Dive into the research topics of 'Spatiotemporal-atlas-based dynamic speech imaging'. Together they form a unique fingerprint.

Cite this