Abstract
Objective: Atherosclerosis is a focal disease that develops at sites of low and oscillatory shear stress in arteries. This study aimed to understand how endothelial cells sense a gradient of fluid shear stress and transduce signals that regulate membrane expression of cell adhesion molecules and monocyte recruitment. Methods: Human aortic endothelial cells were stimulated with TNF-α and simultaneously exposed to a linear gradient of shear stress that increased from 0 to 16 dyne/cm2. Cell adhesion molecule expression and activation of NFκ B were quantified by immunofluorescence microscopy with resolution at the level of a single endothelial cell. Monocyte recruitment was imaged using custom microfluidic flow chambers. Results: VCAM-1 and E-selectin upregulationwas greatest between 2-4 dyne/cm2 (6 and 4-fold, respectively) and above 8 dyne/cm2 expression was suppressed below that of untreated endothelial cells. In contrast, ICAM-1 expression and NFκ B nuclear translocation increased with shear stress up to a maximum at 9 dyne/cm2. Monocyte recruitment was most efficient in regions where E-selectin and VCAM-1 expression was greatest. Conclusions: We found that the endothelium can sense a change in shear stress on the order of 0.25 dyne/cm2 over a length of ∼10 cells, regulating the level of protein transcription, cellular adhesion molecule expression, and leukocyte recruitment during inflammation.
Original language | English (US) |
---|---|
Pages (from-to) | 311-323 |
Number of pages | 13 |
Journal | Microcirculation |
Volume | 15 |
Issue number | 4 |
DOIs | |
State | Published - May 2008 |
Keywords
- Atherosclerosis
- Endothelium
- Inflammation
- Monocyte
- Shear stress gradient
ASJC Scopus subject areas
- Physiology
- Genetics
- Cardiology and Cardiovascular Medicine