Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis

Pin Wang, Rajan Bista, Rohit Bhargava, Randall E. Brand, Yang Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A novel microscopy technique, spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is proposed to obtain quantitative phase imaging of sub-cellular structures with sub-nanometer sensitivity. This technique utilizes a low spatial-coherence from a thermal light source and produces a speckle-free, nanoscale-sensitive quantitative phase map of scattering objects. With this technique, for the first time to our knowledge, we quantified the refractive index of the cell nuclei on the original unmodified histology specimens. The results show that the average refractive index of the cell nucleus is significantly increased in cells from cancer patients compared to that of the histologically normal cells from healthy patients. More importantly, we demonstrate the superior sensitivity of refractive index of cell nucleus in detecting cancer from histologically normal cells from cancer patients. Because this technique is simple, sensitive, does not require special tissue processing, and can be applied to archived specimens, it can be disseminated to all clinical settings.

Original languageEnglish (US)
Title of host publicationOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV
DOIs
StatePublished - 2011
Externally publishedYes
EventOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV - San Francisco, CA, United States
Duration: Jan 24 2011Jan 26 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7889
ISSN (Print)1605-7422

Other

OtherOptical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XV
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/24/111/26/11

Keywords

  • cancer detection
  • Quantitative phase microscopy
  • spectroscopy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Spatial-domain low-coherence quantitative phase microscopy for cancer diagnosis'. Together they form a unique fingerprint.

Cite this