Abstract
This work proposes a novel approach for reducing the computational complexity of speech denoising neural networks by using a sparsely active ensemble topology. In our ensemble networks, a gating module classifies an input noisy speech signal either by identifying speaker gender or by estimating signal degradation, and exclusively assigns it to a best-case specialist module, optimized to denoise a particular subset of the training data. This approach extends the hypothesis that speech denoising can be simplified if it is split into non-overlapping subproblems, contrasting earlier approaches that train large generalist neural networks to address a wide range of noisy speech data. We compare a baseline recurrent network against an ensemble of similarly designed, but smaller networks. Each network module is trained independently and combined to form a naïve ensemble. This can be further fine-tuned using a sparsity parameter to improve performance. Our experiments on noisy speech data-generated by mixing LibriSpeech and MUSAN datasets-demonstrate that a fine-tuned sparsely active ensemble can outperform a generalist using significantly fewer calculations. The key insight of this paper, leveraging model selection as a form of network compression, may be used to supplement already-existing deep learning methods for speech denoising.
Original language | English (US) |
---|---|
Pages (from-to) | 4526-4530 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 2020-October |
DOIs | |
State | Published - 2020 |
Externally published | Yes |
Event | 21st Annual Conference of the International Speech Communication Association, INTERSPEECH 2020 - Shanghai, China Duration: Oct 25 2020 → Oct 29 2020 |
Keywords
- Adaptive mixture of local experts
- Model selection
- Neural network compression
- Speech enhancement
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modeling and Simulation