TY - JOUR
T1 - Sparse low rank approximation of potential energy surfaces with applications in estimation of anharmonic zero point energies and frequencies
AU - Rai, Prashant
AU - Sargsyan, Khachik
AU - Najm, Habib
AU - Hirata, So
N1 - Publisher Copyright:
© 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
PY - 2019/8/15
Y1 - 2019/8/15
N2 - We propose a method that exploits sparse representation of potential energy surfaces (PES) on a polynomial basis set selected by compressed sensing. The method is useful for studies involving large numbers of PES evaluations, such as the search for local minima, transition states, or integration. We apply this method for estimating zero point energies and frequencies of molecules using a three step approach. In the first step, we interpret the PES as a sparse tensor on polynomial basis and determine its entries by a compressed sensing based algorithm using only a few PES evaluations. Then, we implement a rank reduction strategy to compress this tensor in a suitable low-rank canonical tensor format using standard tensor compression tools. This allows representing a high dimensional PES as a small sum of products of one dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate the product of sparse canonical low-rank representation of PES and Green’s function in the second-order diagrammatic vibrational many-body Green’s function theory (XVH2) for estimation of zero-point energies and frequencies. Numerical tests on molecules considered in this work suggest a more efficient scaling of computational cost with molecular size as compared to other methods.
AB - We propose a method that exploits sparse representation of potential energy surfaces (PES) on a polynomial basis set selected by compressed sensing. The method is useful for studies involving large numbers of PES evaluations, such as the search for local minima, transition states, or integration. We apply this method for estimating zero point energies and frequencies of molecules using a three step approach. In the first step, we interpret the PES as a sparse tensor on polynomial basis and determine its entries by a compressed sensing based algorithm using only a few PES evaluations. Then, we implement a rank reduction strategy to compress this tensor in a suitable low-rank canonical tensor format using standard tensor compression tools. This allows representing a high dimensional PES as a small sum of products of one dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate the product of sparse canonical low-rank representation of PES and Green’s function in the second-order diagrammatic vibrational many-body Green’s function theory (XVH2) for estimation of zero-point energies and frequencies. Numerical tests on molecules considered in this work suggest a more efficient scaling of computational cost with molecular size as compared to other methods.
KW - Anharmonic vibrations
KW - Compressed sensing
KW - Green’s function theory
KW - High dimensional integration
KW - Potential energy surfaces
KW - Tensor decomposition
UR - http://www.scopus.com/inward/record.url?scp=85067250745&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067250745&partnerID=8YFLogxK
U2 - 10.1007/s10910-019-01034-z
DO - 10.1007/s10910-019-01034-z
M3 - Article
AN - SCOPUS:85067250745
SN - 0259-9791
VL - 57
SP - 1732
EP - 1754
JO - Journal of Mathematical Chemistry
JF - Journal of Mathematical Chemistry
IS - 7
ER -