Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials

B. Feigin, M. Jimbo, R. Kedem, S. Loktev, T. Miwa

Research output: Contribution to journalArticle

Abstract

In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [B. Feigin et al., math.QA/0205324, 2002]. We describe the sln fusion products for symmetric tensor representations following the method of [B. Feigin, E. Feigin, math.QA/0201111, 2002], and show that their Hilbert polynomials are An-1-supernomials. We identify the fusion product of arbitrary irreducible sln -modules with the fusion product of their restriction to sln-1. Then using the equivalence theorem from [B. Feigin et al., math.QA/0205324, 2002] and the results above for sl3 we give a fermionic formula for the Hilbert polynomials of a class of sl2 coinvariants in terms of the level-restricted Kostka polynomials. The coinvariants under consideration are a generalization of the coinvariants studied in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; math.QA/0009198, 2000; math.QA/0012190, 2000]. Our formula differs from the fermionic formula established in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; QA/0012190 math.QA/0012190, 2000] and implies the alternating sum formula conjectured in [B. Feigin, S.; Loktev, QA/9812093 1998; Amer. Math. Sci. Transl. 194 (1999) 61-79] for this case.

Original languageEnglish (US)
Pages (from-to)147-179
Number of pages33
JournalJournal of Algebra
Volume279
Issue number1
DOIs
StatePublished - Sep 1 2004

Fingerprint

Hilbert Polynomial
Character Formula
Fusion
Polynomial
Sum formula
Equivalence Theorem
Irreducible Module
Continue
Tensor
Restriction
Imply
Arbitrary

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials. / Feigin, B.; Jimbo, M.; Kedem, R.; Loktev, S.; Miwa, T.

In: Journal of Algebra, Vol. 279, No. 1, 01.09.2004, p. 147-179.

Research output: Contribution to journalArticle

Feigin, B. ; Jimbo, M. ; Kedem, R. ; Loktev, S. ; Miwa, T. / Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials. In: Journal of Algebra. 2004 ; Vol. 279, No. 1. pp. 147-179.
@article{ec2c04b07dd647f4b402fb7fa1d8accb,
title = "Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials",
abstract = "In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [B. Feigin et al., math.QA/0205324, 2002]. We describe the sln fusion products for symmetric tensor representations following the method of [B. Feigin, E. Feigin, math.QA/0201111, 2002], and show that their Hilbert polynomials are An-1-supernomials. We identify the fusion product of arbitrary irreducible sln -modules with the fusion product of their restriction to sln-1. Then using the equivalence theorem from [B. Feigin et al., math.QA/0205324, 2002] and the results above for sl3 we give a fermionic formula for the Hilbert polynomials of a class of sl2 coinvariants in terms of the level-restricted Kostka polynomials. The coinvariants under consideration are a generalization of the coinvariants studied in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; math.QA/0009198, 2000; math.QA/0012190, 2000]. Our formula differs from the fermionic formula established in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; QA/0012190 math.QA/0012190, 2000] and implies the alternating sum formula conjectured in [B. Feigin, S.; Loktev, QA/9812093 1998; Amer. Math. Sci. Transl. 194 (1999) 61-79] for this case.",
author = "B. Feigin and M. Jimbo and R. Kedem and S. Loktev and T. Miwa",
year = "2004",
month = "9",
day = "1",
doi = "10.1016/j.jalgebra.2004.03.004",
language = "English (US)",
volume = "279",
pages = "147--179",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Spaces of coinvariants and fusion product II. sl2 character formulas in terms of Kostka polynomials

AU - Feigin, B.

AU - Jimbo, M.

AU - Kedem, R.

AU - Loktev, S.

AU - Miwa, T.

PY - 2004/9/1

Y1 - 2004/9/1

N2 - In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [B. Feigin et al., math.QA/0205324, 2002]. We describe the sln fusion products for symmetric tensor representations following the method of [B. Feigin, E. Feigin, math.QA/0201111, 2002], and show that their Hilbert polynomials are An-1-supernomials. We identify the fusion product of arbitrary irreducible sln -modules with the fusion product of their restriction to sln-1. Then using the equivalence theorem from [B. Feigin et al., math.QA/0205324, 2002] and the results above for sl3 we give a fermionic formula for the Hilbert polynomials of a class of sl2 coinvariants in terms of the level-restricted Kostka polynomials. The coinvariants under consideration are a generalization of the coinvariants studied in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; math.QA/0009198, 2000; math.QA/0012190, 2000]. Our formula differs from the fermionic formula established in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; QA/0012190 math.QA/0012190, 2000] and implies the alternating sum formula conjectured in [B. Feigin, S.; Loktev, QA/9812093 1998; Amer. Math. Sci. Transl. 194 (1999) 61-79] for this case.

AB - In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [B. Feigin et al., math.QA/0205324, 2002]. We describe the sln fusion products for symmetric tensor representations following the method of [B. Feigin, E. Feigin, math.QA/0201111, 2002], and show that their Hilbert polynomials are An-1-supernomials. We identify the fusion product of arbitrary irreducible sln -modules with the fusion product of their restriction to sln-1. Then using the equivalence theorem from [B. Feigin et al., math.QA/0205324, 2002] and the results above for sl3 we give a fermionic formula for the Hilbert polynomials of a class of sl2 coinvariants in terms of the level-restricted Kostka polynomials. The coinvariants under consideration are a generalization of the coinvariants studied in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; math.QA/0009198, 2000; math.QA/0012190, 2000]. Our formula differs from the fermionic formula established in [B. Feigin et al., Transfom. Groups 6 (2001) 25-52; QA/0012190 math.QA/0012190, 2000] and implies the alternating sum formula conjectured in [B. Feigin, S.; Loktev, QA/9812093 1998; Amer. Math. Sci. Transl. 194 (1999) 61-79] for this case.

UR - http://www.scopus.com/inward/record.url?scp=4043154411&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4043154411&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2004.03.004

DO - 10.1016/j.jalgebra.2004.03.004

M3 - Article

AN - SCOPUS:4043154411

VL - 279

SP - 147

EP - 179

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

IS - 1

ER -