Abstract
Increasing atmospheric carbon dioxide concentration ([CO2]) directly impacts C3 plant photosynthesis and productivity, and the rate at which [CO2] is increasing is greater than initially predicted by worst-case scenario climate models. Thus, it is increasingly important to assess the physiological responses of C3 plants, especially those that serve as important crops, to [CO2] beyond the mid-range levels used in traditional experiments. Here, we grew the C3 crop soybean (Glycine max) at eight different [CO2] levels spanning subambient (340 ppm) to the highest level thought plausible (~2000 ppm) in chambers for 5 weeks. Physiological development was delayed and plant height and total leaf area increased at [CO2] levels higher than ambient conditions, with very little difference in these parameters among the elevated [CO2] treatments >900 ppm. Daily photosynthesis initially increased with rising [CO2] but began to level off at ~1000 ppm CO2. Similar results occurred in biomass accumulation. Thus, as [CO2] continues to match or exceed the worst-case emission scenarios, these results indicate that carbon gain, growth, and potentially yield increases will diminish, thereby ultimately constraining the positive impact that continuing increases in atmospheric [CO2] could have on crop productivity and global terrestrial carbon sinks.
Original language | English (US) |
---|---|
Pages (from-to) | 3690-3700 |
Number of pages | 11 |
Journal | Journal of experimental botany |
Volume | 71 |
Issue number | 12 |
DOIs | |
State | Published - Jun 22 2020 |
Keywords
- Biomass
- elevated CO
- photosynthesis
- soybean (Glycine max)
ASJC Scopus subject areas
- Physiology
- Plant Science